试题
题目:
如图,梯形ABCD中,AD∥BC,AB=DC=AD=4,BD⊥CD,E是BC的中点.
(1)求∠DBC的度数;
(2)求BC的长;
(3)点P从点B出发沿B→C以每秒3个单位的速度向点C匀速运动,同时点Q从点E出发沿E→D以每秒1个单位的速度向点D匀速运动,当其中一点到达终点时,另一点也停止运动.设运动时间为t(s),连接PQ.当t为何值时△PEQ为等腰三角形?
答案
解:(1)设∠DBC=x,
∵AD∥BC,AB=AD,
∴∠ABD=∠ADB=x,四边形ABCD为等腰梯形,∠BCD=2x,
又∵BD⊥CD,
∴x+2x=90°,即x=30°.
即∠DBC=30°.
(2)∵在Rt△BCD中,E是BC的中点,
∴DE=BE=CE
又∵∠C=60°,
∴△CDE为等边三角形.
∴DE=DC=4,即BC=2DE=8.
(3)若点P在BE上,∵∠PEQ=120°,
∴PE=QE;即4-3t=t,
解之t=1s;
若P在EC上,∵∠PEQ=60°,
∴PE=QE,
即3t-4=t,
解之t=2s.
∴当t=1s或t=2s时,△PEQ是等腰三角形.
解:(1)设∠DBC=x,
∵AD∥BC,AB=AD,
∴∠ABD=∠ADB=x,四边形ABCD为等腰梯形,∠BCD=2x,
又∵BD⊥CD,
∴x+2x=90°,即x=30°.
即∠DBC=30°.
(2)∵在Rt△BCD中,E是BC的中点,
∴DE=BE=CE
又∵∠C=60°,
∴△CDE为等边三角形.
∴DE=DC=4,即BC=2DE=8.
(3)若点P在BE上,∵∠PEQ=120°,
∴PE=QE;即4-3t=t,
解之t=1s;
若P在EC上,∵∠PEQ=60°,
∴PE=QE,
即3t-4=t,
解之t=2s.
∴当t=1s或t=2s时,△PEQ是等腰三角形.
考点梳理
考点
分析
点评
专题
梯形;等腰三角形的判定.
(1)由已知可以知道,四边形为ABCD为等腰梯形,可知两底角相等,及AB=DC=AD,且BD⊥CD,所以我们可用直角三角形两余角和为90度.
(2)由(1)知,BC=2CD,可知△CDE为等边三角形,即BC=2EC=2CD=8.
(3)根据题意,若△PEQ为等腰三角形,即EQ=EP,当P在点E的左边为一种情况;在右边为一种情况.由已知可列方程,解之即可得出t.
本题主要考查了梯形,直角三角形,等边三角形及等腰三角形的性质的知识.
计算题;动点型.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )