试题
题目:
如图,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE.求证:AD+BC=DC.
答案
证明:延长DE交CB的延长线于F,
∵AD∥CF,
∴∠A=∠ABF,∠ADE=∠F.
在△AED与△BEF中,
∠A=∠ABF
AE=BE
∠ADE=∠F
,
∴△AED≌△BEF,
∴AD=BF,DE=EF,
∵CE⊥DF,
∴CD=CF=BC+BF,
∴AD+BC=DC.
证明:延长DE交CB的延长线于F,
∵AD∥CF,
∴∠A=∠ABF,∠ADE=∠F.
在△AED与△BEF中,
∠A=∠ABF
AE=BE
∠ADE=∠F
,
∴△AED≌△BEF,
∴AD=BF,DE=EF,
∵CE⊥DF,
∴CD=CF=BC+BF,
∴AD+BC=DC.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质.
延长DE交CB的延长线于F,可证得△AED≌△BEF,根据三线合一的性质可得出CD=CF,进而利用等线段的代换可证得结论.
本题考查梯形的知识,因为点E是中点,所以应该联想到构造全等三角形,这是经常用到的解题思路,同学们要注意掌握.
证明题.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )