试题

题目:
青果学院如图,在梯形ABCD,AD∥BC,AB=CD,P为梯形内一点,且PB=PC,求证:PA=PD.
答案
证明:∵在梯形ABCD,AD∥BC,AB=CD,
∴∠ABC=∠DCB,
∵PB=PC,
∴∠PBC=∠PCB,
∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP,
又∵AB=DC,PB=PC,
∴△ABP≌△DCP.
∴PA=PD.
证明:∵在梯形ABCD,AD∥BC,AB=CD,
∴∠ABC=∠DCB,
∵PB=PC,
∴∠PBC=∠PCB,
∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP,
又∵AB=DC,PB=PC,
∴△ABP≌△DCP.
∴PA=PD.
考点梳理
梯形;全等三角形的判定与性质.
由AD∥BC,AB=CD,可得∠ABC=∠DCB(等腰梯形的同一底上的角相等);又由PB=PC,根据等角对等边,可得∠PBC=∠PCB,即可求得∠ABP=∠DCP,根据SAS,易证得△ABP≌△DCP;即可证得PA=PD.
此题考查了等腰梯形的性质与等腰三角形的性质,以及全等三角形的判定.此题难度不大,注意数形结合思想的应用.
证明题.
找相似题