试题
题目:
如图,在梯形ABCD,AD∥BC,AB=CD,P为梯形内一点,且PB=PC,求证:PA=PD.
答案
证明:∵在梯形ABCD,AD∥BC,AB=CD,
∴∠ABC=∠DCB,
∵PB=PC,
∴∠PBC=∠PCB,
∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP,
又∵AB=DC,PB=PC,
∴△ABP≌△DCP.
∴PA=PD.
证明:∵在梯形ABCD,AD∥BC,AB=CD,
∴∠ABC=∠DCB,
∵PB=PC,
∴∠PBC=∠PCB,
∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP,
又∵AB=DC,PB=PC,
∴△ABP≌△DCP.
∴PA=PD.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质.
由AD∥BC,AB=CD,可得∠ABC=∠DCB(等腰梯形的同一底上的角相等);又由PB=PC,根据等角对等边,可得∠PBC=∠PCB,即可求得∠ABP=∠DCP,根据SAS,易证得△ABP≌△DCP;即可证得PA=PD.
此题考查了等腰梯形的性质与等腰三角形的性质,以及全等三角形的判定.此题难度不大,注意数形结合思想的应用.
证明题.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )