试题

题目:
青果学院如图,在梯形ABCD中,AD∥BC,AB=AD=a,DC=b,且DC边的垂直平分线EF交BC边于E,又DE∥AB,则梯形ABCD的周长等于
4a+b
4a+b

答案
4a+b

解:梯形ABCD的周长=AB+AD+CD+CE+BE,
∵DE∥AB,AD∥BC,
∴ABED为平行四边形,
∴DE=AB=a,
∵DC边的垂直平分线EF交BC边于E
∴DE=CE=a
∵ABED为平行四边形,
∴AD=BE=CE=a,
∴梯形ABCD的周长=AB+AD+CD+CE+BE=a+a+b+2a=4a+b.
考点梳理
线段垂直平分线的性质;梯形.
要求梯形的周长,就要利用周长公式,然后根据垂直平分线的性质求出梯形的各边长即可.
此题的关键是求出AD,CE,BE和AB的相等关系,即可求出梯形周长.
找相似题