试题
题目:
如图,梯形ABCD中,AD∥BC,DE∥AB交BC于点E,△CDE的周长为12cm,梯形ABCD的周长为20cm,则上底AD的长为
4
4
cm.
答案
4
解:∵AD∥BC,AB∥DE,
∴四边形ADEB是平行四边形,从而可得AB=DE,AD=BE,
故ABCD的周长可表示为:AD+AB+BE+EC+DC=2AD+DE+EC+CD=20,
∴2AD=20-12=8,
∴AD=4cm,
故答案为:4.
考点梳理
考点
分析
点评
梯形.
由题意可得出四边形ADEB是平行四边形,从而可得AB=DE=DC,从而ABCD的周长可转化为2AD+三角形DEC的周长,代入可得出答案.
本题考查等腰梯形的性质,对本题而言,关键是判断出四边形ADEB是平行四边形,从而根据平行四边形对边相等的性质将梯形的周长转化为2AD+三角形DEC的周长.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )