试题
题目:
如图,已知在梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,四边形AEFG是平行四边形,AE=GC.
(1)求证:AB=DC;
(2)当∠FGC=2∠1时,试判断四边形AEFG的形状,并证明你的结论.
答案
(1)证明:∵四边形AEFG是平行四边形,
∴AE∥GF,AE=GF.
∴∠GFC=∠B.
∵AE=GC,AE=GF,∴GF=GC,∴∠GFC=∠C.
∴∠B=∠C.
∴AB=DC.
(2)解:四边形AEFG是矩形.
理由:作GH⊥BC于点H.
∵GF=GC,∴∠FGC=2∠CGH,
又∵∠FGC=2∠1,∴∠CGH=∠1,
∴∠CGH+∠C=90°,
∴∠1+∠B=90°,
∴∠BEF=90°,∴∠AEF=90°,
∴平行边形AEFG是矩形.
(1)证明:∵四边形AEFG是平行四边形,
∴AE∥GF,AE=GF.
∴∠GFC=∠B.
∵AE=GC,AE=GF,∴GF=GC,∴∠GFC=∠C.
∴∠B=∠C.
∴AB=DC.
(2)解:四边形AEFG是矩形.
理由:作GH⊥BC于点H.
∵GF=GC,∴∠FGC=2∠CGH,
又∵∠FGC=2∠1,∴∠CGH=∠1,
∴∠CGH+∠C=90°,
∴∠1+∠B=90°,
∴∠BEF=90°,∴∠AEF=90°,
∴平行边形AEFG是矩形.
考点梳理
考点
分析
点评
矩形的判定;平行四边形的性质;梯形.
(1)利用平行线的性质和判定以及平行四边形的性质得出,∠GFC=∠C,进而得出∠B=∠C即可得出答案;
(2)利用已知得出∠CGH=∠1,进而得出∠1+∠B=90°,求出∠BEF=90°,即∠AEF=90°,利用矩形的判定得出答案.
此题主要考查了平行四边形的性质与矩形的判定定理和平行线的性质等知识,根据已知得出∠1+∠B=90°是解题关键.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )