试题
题目:
如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.
答案
解:作梯形ABCD的中位线EF,连接OE、OF,
即EF=
1
2
(AD+BC),
∵AC⊥BD,
∵∠AOB=∠DOC=90°,
∵E为AB中点,F为DC中点,
∴OE=
1
2
AB,OF=
1
2
CD,
∵在△OEF中,OE+OF>EF,
∴
1
2
AB+
1
2
CD>
1
2
(AD+BC),
∴AB+CD>AD+BC,
∴AD+BC<AB+CD.
解:作梯形ABCD的中位线EF,连接OE、OF,
即EF=
1
2
(AD+BC),
∵AC⊥BD,
∵∠AOB=∠DOC=90°,
∵E为AB中点,F为DC中点,
∴OE=
1
2
AB,OF=
1
2
CD,
∵在△OEF中,OE+OF>EF,
∴
1
2
AB+
1
2
CD>
1
2
(AD+BC),
∴AB+CD>AD+BC,
∴AD+BC<AB+CD.
考点梳理
考点
分析
点评
专题
梯形;三角形三边关系;三角形中位线定理.
作梯形ABCD的中位线EF,连接OE、OF,根据梯形中位线定理得出EF=
1
2
(AD+BC),根据直角三角形斜边上中线定理得出OE=
1
2
AB,OF=
1
2
CD,在△OEF中根据三角形三边关系定理得出OE+OF>EF,代入即可求出AB+CD>AD+BC.
此题的难点在于将所求的线段转换到同一个三角形中,而正确地作出辅助线是顺利解题的前提;题目综合了梯形的中位线,三角形的三边关系定理,直角三角形斜边上中线定理等重要知识点,难度较大.
证明题.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )