试题
题目:
(2010·眉山)如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3
3
,则下底BC的长为
10
10
.
答案
10
解:如图,过A作AE∥CD交BC于点E,
∵AD∥BC,∴四边形AECD是平行四边形,
∴CE=AD=4,
∵∠B=30°,∠C=60°,
∴∠BAE=90°,
∴AE=
1
2
BE(直角三角形30°角所对的直角边等于斜边的一半),
在Rt△ABE中,BE
2
=AB
2
+AE
2
,
即BE
2
=(3
3
)
2
+(
1
2
BE)
2
,
BE
2
=27+
1
4
BE
2
,
BE
2
=36,
解得BE=6,
∴BC=BE+EC=6+4=10.
故答案为:10.
考点梳理
考点
分析
点评
专题
梯形.
过A作AE∥CD,把梯形分成平行四边形和直角三角形,利用平行四边形的对边相等得到CE=AD,所以BE可以求出,在直角三角形中,根据∠B=30°,利用勾股定理求出BE,BC的长也就可以求出了.
通过作腰的平行线,把梯形分成平行四边形和直角三角形,再利用直角三角形30°角所对的直角边等于斜边的一半和勾股定理求解,考虑本题的突破口在于两个已知角的和是90°.
压轴题.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )