试题
题目:
如图梯形ABCD中,AD∥BC,∠ABC+∠C=90°,AB=6,CD=8,M,N,P分别为AD、BC、BD的中点,则MN的长为( )
A.4
B.5
C.6
D.7
答案
B
解:∵M,N,P分别为AD、BC、BD的中点,
∴MP∥AB,PN∥CD,MP=
1
2
AB=3,PN=
1
2
CD=4.
∴∠MPD=∠ABD,∠PNB=∠C.
又∠ABC+∠C=90°,∠DPN=∠PBN+∠PNB,
∴∠MPN=90°.
∴MN=
MP
2
+
PN
2
=5.
故选B.
考点梳理
考点
分析
点评
梯形;三角形中位线定理.
根据三角形的中位线定理,得MP∥AB,PN∥CD,MP=
1
2
AB=3,PN=
1
2
CD=4;再根据平行线的性质,得∠MPD=∠ABD,∠PNB=∠C;根据三角形的外角的性质和已知∠ABC+∠C=90°,得∠MPN=90°,进而根据勾股定理求解.
此题考查了三角形的中位线定理、三角形的外角的性质以及勾股定理.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )