试题

题目:
青果学院如图,梯形ABCD中,AD∥BC,∠B+∠C=90°,E、F分别是AD、BC的中点,若AD=5cm,BC=13cm,那么EF=(  )



答案
A
解:过点E作AB、CD的平行线,与BC分别交于G,H,
∵∠B+∠C=90°,青果学院
∴∠EGH=∠B,∠EHG=∠C,
∴∠EGH+∠EHG=90°,
∴四边形ABGE和四边形CDEH都是平行四边形,△EGH为直角三角形,
∵E、F分别是AD、BC的中点,
∴BG=CH=2.5,GH=8,
根据直角三角形中斜边上的中线是斜边的一半知,
∴EF=
1
2
GH=4,
故选A.
考点梳理
梯形;直角三角形斜边上的中线;平行四边形的判定与性质.
根据已知条件,过点E作AB、CD的平行线与BC分别相交G,H,根据直角三角形的性质可求得GH的长,从而就得到了EF的长.
本题考查了梯形的性质,解题的关键是通过作辅助线,利用直角三角形的斜边上的中线的性质求解.
找相似题