试题
题目:
(2003·荆门)给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有( )
A.1个
B.2个
C.3个
D.4个
答案
B
解:①、错误,根据梯形的概念:“一组对边平行,而另一组对边不平行的四边形”判定可知.
②、正确,由于平行四边形中两组对角相等,一条对角线平分一个内角,则也要平分另一个角,再根据等角对等边,得到平行四边形的一组邻边相等,故有邻边相等的平行四边形是菱形.
③、正确,由于矩形的两条对角线相等且平分,对角线互相垂直,则两条对角线的一半与边成等腰直角三角形,故是正方形.
④、错误,等腰梯形满足此条件,但不是平行四边形.
故选B.
考点梳理
考点
分析
点评
梯形;平行四边形的判定;菱形的判定;正方形的判定.
根据梯形、菱形正方形及平行四边形的判定,逐个判断,即可得出结论.
此题综合考查了梯形、菱形正方形及平行四边形的判定.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )