试题
题目:
(2006·长沙)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;上果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
(1)求乙工程队单独完成这项工程所需的天数;
(2)求两队合做完成这项工程所需的天数.
答案
解:(1)设乙工程队单独完成这项工程需要x天,
根据题意得:
10
x
+(
1
x
+
1
40
)
×20=1,
解之得:x=60,
经检验,x=60是原方程的解.
答:乙工程队单独完成这项工程所需的天数为60天.
(2)设两队合做完成这项工程所需的天数为y天,
根据题意得:
(
1
40
+
1
60
)
y=1,
解之得:y=24.
答:两队合做完成这项工程所需的天数为24天.
解:(1)设乙工程队单独完成这项工程需要x天,
根据题意得:
10
x
+(
1
x
+
1
40
)
×20=1,
解之得:x=60,
经检验,x=60是原方程的解.
答:乙工程队单独完成这项工程所需的天数为60天.
(2)设两队合做完成这项工程所需的天数为y天,
根据题意得:
(
1
40
+
1
60
)
y=1,
解之得:y=24.
答:两队合做完成这项工程所需的天数为24天.
考点梳理
考点
分析
点评
专题
分式方程的应用.
本题的等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.
本题主要考查分式方程的应用,考查学生对方程知识的应用能力,属于中难度题.
工程问题.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
(2013·日照)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )
(2005·枣庄)学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是( )
(2004·云南)一组学生去春游,预计共需费用120元,后来又有2个参加进来,总费用不变,于是每人可少分摊3元,原来这组学生人数是( )
一件工作,甲独做需要5天完成,乙独做需要3天完成,两人合做一天可完成这件工作的( )