答案
证明:∵(a
2+b
2-c
2)
2-4a
2b
2=(a
2+b
2-c
2)
2-(2ab)
2=(a
2+b
2-c
2+2ab)(a
2+b
2-c
2-2ab)
=[(a
2+2ab+b
2)-c
2][(a
2-2ab+b
2)-c
2]
=[(a+b)
2-c
2][(a-b)
2-c
2]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c),
∵a,b,c是△ABC的三边,
∴a+b+c>0,a+b-c>0,a-b-c<0,a-b+c>0,
∴(a
2+b
2-c
2)
2-4a
2b
2=(a+b+c)(a+b-c)(a-b+c)(a-b-c)<0.
证明:∵(a
2+b
2-c
2)
2-4a
2b
2=(a
2+b
2-c
2)
2-(2ab)
2=(a
2+b
2-c
2+2ab)(a
2+b
2-c
2-2ab)
=[(a
2+2ab+b
2)-c
2][(a
2-2ab+b
2)-c
2]
=[(a+b)
2-c
2][(a-b)
2-c
2]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c),
∵a,b,c是△ABC的三边,
∴a+b+c>0,a+b-c>0,a-b-c<0,a-b+c>0,
∴(a
2+b
2-c
2)
2-4a
2b
2=(a+b+c)(a+b-c)(a-b+c)(a-b-c)<0.