答案
解:5x
2+2y
2+2z
2+2xy+2yz-4xz-6y-4z+6=0·(x
2+2y
2+2xy)+(y
2+z
2+2yz)+(4x
2+z
2-4xz)-6z-4z+6=0·(x+y)
2+(y+z)
2+(2x-z)
2-6y-4z+6=0
设上式可分转化成x、y、z一次方因式平方和的形式,即(x+y+a)
2+(y+z+b)
2+(2x-z+c)
2=0·(x+y)
2+(y+z)
2+(2x-z)
2+(2a+4c)x+(2a+2b)y+(2b-2c)6z+a
2+b
2+c
2=0
(x+y)
2+(y+z)
2+(2x-z)
2-6y-4z+6=0与(x+y)
2+(y+z)
2+(2x-z)
2+(2a+4c)x+(2a+2b)y+(2b-2c)z+a
2+b
2+c
2=0
比较可得
| 2a+4c=0 | 2a+2b=-6 | 2b-2c=-4 | a2+b2+c2=6 |
| |
解得a=-2,b=-1,c=1
∴5x
2+2y
2+2z
2+2xy+2yz-4xz-6y-4z+6=(x+y-2)
2+(y+z-1)
2+(2x-z+1)
2=0
∴
解得x=0,y=2,z=1
解:5x
2+2y
2+2z
2+2xy+2yz-4xz-6y-4z+6=0·(x
2+2y
2+2xy)+(y
2+z
2+2yz)+(4x
2+z
2-4xz)-6z-4z+6=0·(x+y)
2+(y+z)
2+(2x-z)
2-6y-4z+6=0
设上式可分转化成x、y、z一次方因式平方和的形式,即(x+y+a)
2+(y+z+b)
2+(2x-z+c)
2=0·(x+y)
2+(y+z)
2+(2x-z)
2+(2a+4c)x+(2a+2b)y+(2b-2c)6z+a
2+b
2+c
2=0
(x+y)
2+(y+z)
2+(2x-z)
2-6y-4z+6=0与(x+y)
2+(y+z)
2+(2x-z)
2+(2a+4c)x+(2a+2b)y+(2b-2c)z+a
2+b
2+c
2=0
比较可得
| 2a+4c=0 | 2a+2b=-6 | 2b-2c=-4 | a2+b2+c2=6 |
| |
解得a=-2,b=-1,c=1
∴5x
2+2y
2+2z
2+2xy+2yz-4xz-6y-4z+6=(x+y-2)
2+(y+z-1)
2+(2x-z+1)
2=0
∴
解得x=0,y=2,z=1