试题
题目:
已知x
2
=x+1,y
2
=y+1,且x≠y.
(1)求证:x+y=1;(2)求x
5
+y
5
的值.
答案
(1)证明:∵x
2
=x+1,y
2
=y+1,
∴x
2
-y
2
=x-y
∴x+y=1(x≠y)
(2)解:∵x
2
=x+1,y
2
=y+1,∴x
3
=x
2
+x,y
3
=y
2
+y,x
4
=x
3
+x
2
,y
4
=y
3
+y
2
,x
5
=x
4
+x
3
,y
5
=y
4
+y
3
,
∴x
5
+y
5
=x
4
+x
3
+y
4
+y
3
=x
3
+x
2
+x
2
+x+y
3
+y
2
+y
2
+y,
=x
2
+x+x
2
+x
2
+x+y
2
+y+y
2
+y
2
+y,
=3(x
2
+y
2
)+2(x+y),
=3(x+1+y+1)+2(x+y),
=3×3+2,
=11.
(1)证明:∵x
2
=x+1,y
2
=y+1,
∴x
2
-y
2
=x-y
∴x+y=1(x≠y)
(2)解:∵x
2
=x+1,y
2
=y+1,∴x
3
=x
2
+x,y
3
=y
2
+y,x
4
=x
3
+x
2
,y
4
=y
3
+y
2
,x
5
=x
4
+x
3
,y
5
=y
4
+y
3
,
∴x
5
+y
5
=x
4
+x
3
+y
4
+y
3
=x
3
+x
2
+x
2
+x+y
3
+y
2
+y
2
+y,
=x
2
+x+x
2
+x
2
+x+y
2
+y+y
2
+y
2
+y,
=3(x
2
+y
2
)+2(x+y),
=3(x+1+y+1)+2(x+y),
=3×3+2,
=11.
考点梳理
考点
分析
点评
专题
因式分解的应用.
(1)将x
2
=x+1,y
2
=y+1,相减可直接得出x+y=1;
(2)由x
2
=x+1,y
2
=y+1,得出x
3
=x
2
+x,y
3
=y
2
+y,同理得出x
5
=x
4
+x
3
,y
5
=y
4
+y
3
,再利用x
2
=x+1,y
2
=y+1,两式之和求出即可.
此题主要考查了因式分解的应用,将两已知条件进行加减运算得出变形后的关系是解决问题的关键.
计算题;证明题.
找相似题
(左j11·台湾)下列四个多项式,哪一个是33x+7的倍式( )
(手011·台湾)某直角柱的两底面为全等的梯形,其四个侧面的面积依序为手0平方公分、36平方公分、手0平方公分、60平方公分,且此直角柱的高为了公分.求此直角柱的体积为多少立方公分( )
(2006·济宁)(-8)
2006
+(-8)
2005
能被下列数整除的是( )
(2010·保定一模)若x、y互为相反数,则2x
2
+2xy-1的值为( )
(2007·锦州一模)如图,边长为a、b的矩形,它的周长为14,面积为10,则a
2
b+ab
2
-ab的值为( )