试题
题目:
如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)Rt△ADE与Rt△BEC全等吗?并说明理由;
(2)△CDE是不是直角三角形?并说明理由.
答案
解:(1)全等,理由是:
∵∠1=∠2,
∴DE=CE,
∵∠A=∠B=90°,AE=BC,
∴Rt△ADE≌Rt△BEC(HL);
(2)是直角三角形,理由是:
∵Rt△ADE≌Rt△BEC,
∴∠3=∠4,
∵∠3+∠5=90°,
∴∠4+∠5=90°,
∴∠DEC=90°,
∴△CDE是直角三角形.
解:(1)全等,理由是:
∵∠1=∠2,
∴DE=CE,
∵∠A=∠B=90°,AE=BC,
∴Rt△ADE≌Rt△BEC(HL);
(2)是直角三角形,理由是:
∵Rt△ADE≌Rt△BEC,
∴∠3=∠4,
∵∠3+∠5=90°,
∴∠4+∠5=90°,
∴∠DEC=90°,
∴△CDE是直角三角形.
考点梳理
考点
分析
点评
直角三角形全等的判定;全等三角形的性质.
(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;
(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.
考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
下列各组条件中,能判断两个直角三角形全等的是( )