试题
题目:
在下列条件中不能判断两个直角三角形全等的是( )
A.已知两个锐角
B.已知一条直角边和一个锐角
C.已知两条直角边
D.已知一条直角边和斜边
答案
A
解:A、已知两锐角相等,只能得到两三角形相似,不能判断两直角三角形全等,本选项符合题意;
B、由两三角形为直角三角形,得到一对直角相等,再加上已知一条直角边及一对锐角相等,可用AAS或ASA判断出两直角三角形全等,本选项不合题意;
C、根据两三角形为直角三角形,得到一对直角相等,再加上已知的两直角边相等,利用SAS可得出两直角三角形全等,本选项不合题意;
D、由两三角形为直角三角形,根据已知的一条直角边及斜边相等,可利用HL判断两直角三角形全等,本选项不合题意,
故选A
考点梳理
考点
分析
点评
专题
直角三角形全等的判定.
A、由两直角三角形中两锐角相等,得到两直角三角形相似,没有已知边的相等,故不能判断两直角三角形全等,符合题意;
B、根据已知的条件及一对直角相等,可利用AAS或ASA得到两直角三角形全等;
C、根据两直角边相等,及一对直角相等,利用SAS可得出两直角三角形全等;
D、由两三角形为直角三角形,根据一条直角边及斜边对应相等,利用HL可得出两直角三角形全等.
此题考查了直角三角形证明全等的判定,证明直角三角形全等的方法有:AAS;ASA;SAS;SSS;HL共五种,值得注意的是五种判定方法中,任意一种都必须有对应边的相等.
计算题.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
下列各组条件中,能判断两个直角三角形全等的是( )