试题
题目:
有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等.其中能判断两直角三角形全等的是( )
A.①
B.②
C.③
D.①②
答案
D
解:∵①一锐角与一边对应相等,
可利用AAS或ASA判定两直角三角形全等,
②两边对应相等,可利用HL或ASA判定两直角三角形全等;
③两锐角对应相等,缺少对应边相等这一条件,
所以不能判定两直角三角形全等.
故选D.
考点梳理
考点
分析
点评
专题
直角三角形全等的判定.
根据全等三角形的判定定理:AAS、SAS、ASA、SSS;直角三角形的判定定理HL对①②③逐个分析,然后即可得出答案.
此题主要考查学生对直角三角形全等的判定的理解和掌握,解答此题的关键是熟练掌握全等三角形的判定定理:AAS、SAS、ASA、SSS;直角三角形的判定定理HL,此题难度不大,是一道基础题.
证明题.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
下列各组条件中,能判断两个直角三角形全等的是( )