试题

题目:
有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等.其中能判断两直角三角形全等的是(  )



答案
D
解:∵①一锐角与一边对应相等,
可利用AAS或ASA判定两直角三角形全等,
②两边对应相等,可利用HL或ASA判定两直角三角形全等;
③两锐角对应相等,缺少对应边相等这一条件,
所以不能判定两直角三角形全等.
故选D.
考点梳理
直角三角形全等的判定.
根据全等三角形的判定定理:AAS、SAS、ASA、SSS;直角三角形的判定定理HL对①②③逐个分析,然后即可得出答案.
此题主要考查学生对直角三角形全等的判定的理解和掌握,解答此题的关键是熟练掌握全等三角形的判定定理:AAS、SAS、ASA、SSS;直角三角形的判定定理HL,此题难度不大,是一道基础题.
证明题.
找相似题