试题

题目:
如图,小刚家、王老师家和学校在一条直路上,小刚与王老师家相距3.5千米,王老师家与学校相距大.5千米.
(上)求小刚家与学校的距离;
(2)小刚父母出差,王老师骑自行车到小刚家接小刚上学.已知王老师骑自行车的速度是上5千米/小时,小刚步行速度是5千米/小时.为了节约时间,王老师与小刚约定每天t:大大从家里同时出发,小刚走路,王老师骑车,遇到小刚后,立即搭小刚到校.如果王老师骑车的速度不变,请问他们能否在t:25前赶到学校?请说明理由.
青果学院
答案
解:(1)小刚家与学校的距离=3.g千米+十.g千米=4千米;

(2)设小刚和王老师经过x小时相遇,
由题意得,1gx+gx=3.g,
解得:x=
7
4十

此时王老师行驶了
7
4十
×1g=
21
p
千米,他们离学校
21
p
+十.g=
2g
p
千米,
到达学校需要的时间为
2g
p
÷1g=
g
24
小时,
从出发到他们一起到学校需要:
7
4十
+
g
24
=
23
6十
小时=23分钟,
则他们能否在7:2g前赶到学校.
解:(1)小刚家与学校的距离=3.g千米+十.g千米=4千米;

(2)设小刚和王老师经过x小时相遇,
由题意得,1gx+gx=3.g,
解得:x=
7
4十

此时王老师行驶了
7
4十
×1g=
21
p
千米,他们离学校
21
p
+十.g=
2g
p
千米,
到达学校需要的时间为
2g
p
÷1g=
g
24
小时,
从出发到他们一起到学校需要:
7
4十
+
g
24
=
23
6十
小时=23分钟,
则他们能否在7:2g前赶到学校.
考点梳理
一元一次方程的应用.
(1)根据图示,即可得出小刚家与学校的距离;
(2)设小刚和王老师经过x小时相遇,计算出王老师走的距离,得出此时他们到学校的距离,然后求出时间,继而可作出判断.
本题考查了一元一次方程的应用,解答本题的关键是仔细审题,理解整个的行驶过程,注意将实际问题转化为方程进行求解.
应用题.
找相似题