数学
如图,以△ABC的边AB、AC为边向外作等边△ABD和等边△ACE,BE与CD相交于点F.
(1)请说明△ABE≌△ADC的理由;
(2)求∠BFC的度数.
拓广探索:
如图,△ABC和△ECD是等边三角形.
(1)如图1,若B,C,D三点在一条直线上,BE和AD有怎样的大小关系?试证明.
(2)如图2,若B,C,D三点不在一条直线上而两三角形内部不重合呢?
(3)如图3,若B,C,D三点不在一条直线上而两三角形内部部分重合呢?
如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.
(1)求证:BE=DC;
(2)求∠BOD的度数;
(3)求证:OA平分∠DOE.
已知△ABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上一点,且BM=CN,直线BN与AM相交与点Q.
(1)说明△BCN≌△ABM;
(2)求∠BQM的度数.
等边三角形ABC的边AB在直线l上,动点D也在直线l上(不与A,B点重合),△ADE为等边三角形.
(1)如图①,当点D在线段BA的延长线上且△ADE与△ABC在直线l的同侧时,试猜想线段BE与CD的大小关系为
BE=CD
BE=CD
(2)如图②,当点D在线段BA上且ADE与ABC在直线l异测时,(1)中的结论是否仍然成立?若不成立,请说明结论发生了怎样的变化;若成立,说明理由,并求出此时线段BE与CD所在直线的夹角α(0°<α<90°)
(3)当点D在线段AB的延长线上且△ADE与△ABC仍然在直线l的异测时,试在图中画③出相应的图形,并直接判断此时BE与CD的关系(不必说明理由).
(1)如图,在等边△ABC中,N为ABC中,N为BC边上任意一点(不含B、C两点),CM为等边△ABC的外角∠ACK的平分线.若∠ANM=60°,求证:AN=NM.
(2)如图,在等边△ABC中,N为BC延长线上任意一点,CM为等边△ABC的外角∠ACK的平分线,若∠ANM=60°,请问AN=NM是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
如图,点M,N分别在等边△ABC的BC,CA边上,直线AM,BN交于点Q,且∠BQM=60°.
(1)求证:BM=CN;
(2)若将题中的点M,N分别移到BC,CA的延长线上,其他条件都不变,是否任能得到BM=CN?请画出图形加以证明.
如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.
已知△ABC为等边三角形,D为AB上任意一点,连接CD,以BD为一边,在△ABC的外部作等边三角形BDE,连接AE.求证:CD=AE.
如图,△ABC是正三角形,AB=4cm,D,E,F分别是AB,BC,CA边上的动点,且AD=BE=CF.
(1)试说明:△DEF是正三角形;
(2)当DF⊥AC时,求AD的长;
(3)当△DEF的面积为
3
cm
2
时,求AD的长.
第一页
上一页
6
7
8
9
10
下一页
最后一页
1107665
1107667
1107670
1107672
1107675
1107678
1107680
1107683
1107686
1107688