数学
如图,在等边△ABC中,B在坐标原点,点A关于x轴的对称点A′的横坐标为1,则点C的横坐标是
-1
-1
.
(2012·天水)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠BFD的度数.
(2011·梅州)如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)当△APC与△PBD的面积之和取最小值时,AP=
a
a
;(直接写结果)
(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动面变化?请说明理由;
(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)
(2010·衡阳)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.
(2005·常州)如图,已知△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且△DEF也是等边三角形.
(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;
(2)你所证明相等的线段,可以通过怎样的变化相互得到写出变化过程.
(2013·西城区一模)如图,点C在线段AB上,△DAC和△DBE都是等边三角形.
(1)求证:△DAB≌△DCE;
(2)求证:DA∥EC.
(2013·房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE=AD.
(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、
等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是
①②③
①②③
(只填序号即可)
①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;
(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.
(2013·道外区一模)如图,△ABC是等边三角形,D、E分别在BC、AC上,AD、BE相交于F,且∠AFE=60°.
求证:AD=BE.
(2012·顺义区一模)问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为
60°
60°
,点E落在
AB的中点处
AB的中点处
,容易得出BE与DE之间的数量关系为
BE=DE
BE=DE
;
(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.
如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.求∠BFD的度数.
第一页
上一页
9
10
11
12
13
下一页
最后一页
1107743
1107745
1107748
1107750
1107753
1107757
1107759
1107762
1107764
1107769