数学
(2006·乌兰察布)如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,
若AE=2cm,AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.
(2006·平凉)如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦关与小半圆相切,且AB=24.问:能求出阴影部分的面积吗?若能,求出此面积;若不能,试说明理由.
(2006·泸州)如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点C.求∠ADC的度数及AC的长.
(2005·扬州)如图1,AB是⊙O的直径,射线BM⊥AB,垂足为B,点C为射线BM上的一个动点(C与B不重合),连接AC交⊙O于D,过点D作⊙O的切线交BC于E.
(1)在C点运动过程中,当DE∥AB时(如图2),求∠ACB的度数;
(2)在C点运动过程中,试比较线段CE与BE的大小,并说明理由;
(3)∠ACB在什么范围内变化时,线段DC上存在点G,满足条件BC
2
=4DG·DC(请写出推理过程).
(2005·芜湖)如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,OA=3,OP=6,求∠BAP的度数.
(2004·盐城)如图,AB是⊙O的直径,DF切⊙O于点D,BF⊥DF于F,过点A作AC∥BF交BD的延长线于点C.
(1)求证:∠ABC=∠C;
(2)设CA的延长线交⊙O于E,BF交⊙O于G,若
DG
的度数等于60°,试简要说明点D和点E关于直线AB对称的理由.
(2004·襄阳)已知:在△ABC中,AB=AC,∠A=36°,AB交⊙O于G、H两点,AC交⊙O于F、E两点,GH=FE,BH=CE.
(1)如图1,求证:AO垂直平分BC;
(2)如图2,BF与CG交于点M,连接AM,并延长分别交GF、BC于点N、D,若BH=1,GH=3,GA=2,求
MN
MD
的值;
(3)在图3中,若⊙O与底边BC相切于中点D,点G、F分别为AB、AC的中点,请你找出与EF相等的线段,并加以证明.
(2004·昆明)(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.
求证:CD=CE;
(2)若将图(2)中的半径OB所在直线向上平行移动交OA于F,交⊙O于B′,其他条件不变,那么上述结论CD=CE还成立吗?为什么?
(3)若将图(3)中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变,那么上述结论CD=CE还成立吗?为什么?
(2003·武汉)已知:如图,在直角坐标系中,⊙O
1
经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)若点O到直线AB的距离为
12
5
,且tan∠B=
3
4
,求线段AB的长;
(2)若点O到直线AB的距离为
12
5
,过点A的切线与y轴交于点C,过点O的切线交AC于点D,过点B的切线交OD于点E,求
1
CD
+
1
BE
的值;
(3)如图,若⊙O
1
经过点M(2,2),设△BOA的内切圆的直径为
d,试判断d+AB的值是否会发生变化,若不变,求出其值;若变化,求其变化的范围.
如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆半径为3cm,那么大圆半径为
5
5
cm.
第一页
上一页
48
49
50
51
52
下一页
最后一页
152488
152491
152493
152496
152498
152501
152503
152505
152507
152509