数学
如图,已知AB是⊙O的直径,P为AB延长线上的一点,PC是⊙O的切线,C为切点,∠A=35°,求∠P的度数.
如图,已知PA、PB、DE分别切⊙O于A、B、C三点,若PO=13cm,△PDE的周长为24cm,∠APB=40°,求:
(1)⊙O的半径;
(2)∠EOD的度数.
如图,已知:AB为⊙O的直径,AB=6
3
,弧AC=
1
3
弧AB,过B点的切线与AC的延长线交于点D.
(1)求OD的长;
(2)若P是AD上的任意一点(不与A、D重合),设PD=x,求△POD的面积y与x的函数关系式,并指出x的取值范围.
如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.
求证:∠AOC=2∠ACD.
如图,以O为圆心的同心圆中,大圆的弦AB是小圆的切线,点C为切点,若圆环的面积(大圆面积与小圆面积的差)为4π,求弦AB的长.
如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,
求证:BD=OB.
在Rt△ABC中,∠ACB=90°,∠A=30°,D在AC上,以DC为直径的半圆O切AB于E.F在CE上,CF:EF=1:3,OF=1,求BC的长.
如图,AB为⊙O为直径,AC为⊙O弦,过C作⊙O切线与AB延长交于点D,若∠CAB=30°,AB=20,求BD的长.
如图,两个半圆中,长为4的弦,AB与直径CD平行且与小半圆相切,那么图中阴影部分的面积等于多少?
如图,石景山游乐园的观览车半径为25m,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟.某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是多少米?(观览车距最低处地面高度不计).
第一页
上一页
25
26
27
28
29
下一页
最后一页
152008
152010
152012
152014
152016
152018
152020
152022
152024
152026