将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN逆时针旋转90°,得到图(2),图(2)中除△ABC≌△CED、△BCN≌△ACF外,你还能找到一对全等的三角形吗?写出你的结论并说明理由.
如图,四边形ABCD是正方形,△ADE旋转后能与△ABF重合,则∠EAF等于
把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12,CD=14,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为
已知:如图所示,P是正方形ABCD内一点,且PA=1,PB=2,PC=3,以B为旋转中心,将△ABP按顺时针方向旋转到△CBE位置,AB边与CB边重合,则∠APB=∠CEB=
如图,等腰三角形ABC(AB=AC)的底角为50°,绕点A逆时针旋转一定角度后得△AB′C′,那么△AB′C′绕点A旋转
如图,将△ABC绕着C点顺时针旋转到△A'B'C'的位置,若∠BCB′=28°,那么∠ACA′=
如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP至P′,将△ABP绕点A旋转后,与△ACP′重合,如果AP=| 2 |
如图,设P为等边△ABC内一点,且PA=4,PB=5,PC=3.则△ABC的边长为25+12
|
25+12
|