试题

题目:
各分式
1
x2-1
x-1
x2-x
1
x2+x+1
的最简公分母是
x(x+1)(x-1)(x2+x+1)
x(x+1)(x-1)(x2+x+1)

答案
x(x+1)(x-1)(x2+x+1)

解:各分式变形得:
1
(x+1)(x-1)
x-1
x(x-1)
1
x2+x+1

则最简公分母为x(x+1)(x-1)(x2+x+1).
故答案为:x(x+1)(x-1)(x2+x+1)
考点梳理
最简公分母.
将各分式分母分解因式,找出最简公分母即可.
此题考查了最简公分母,确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
计算题.
找相似题