试题

题目:
计算
(1)a2·(-2a22÷a3-2a3
(2)(5a-4b)2-(5a-4b)(3a-2b)
(3)(2x-1)(2x+1)(4x2-1)
(4)(x-2y+3)(x+2y-3)
答案
解:(1)a2·(-2a22÷a3-2a3
=a2·4a4÷a3-2a3
=4a3-2a3
=2a3

(2)(5a-4b)2-(5a-4b)(3a-2b),
=(25a2-40ab+16b2)-(15a2-22ab+8b2),
=25a2-40ab+16b2-15a2+22ab-8b2
=10a2-18ab+8b2
(3)(2x-1)(2x+1)(4x2-1),
=(4x2-1)2
=16x4-8x2+1;
(4)(x-2y+3)(x+2y-3),
=[x-(2y-3)][x+(2y-3)],
=x2-(2y-3)2
=x2-4y2+12y-9.
解:(1)a2·(-2a22÷a3-2a3
=a2·4a4÷a3-2a3
=4a3-2a3
=2a3

(2)(5a-4b)2-(5a-4b)(3a-2b),
=(25a2-40ab+16b2)-(15a2-22ab+8b2),
=25a2-40ab+16b2-15a2+22ab-8b2
=10a2-18ab+8b2
(3)(2x-1)(2x+1)(4x2-1),
=(4x2-1)2
=16x4-8x2+1;
(4)(x-2y+3)(x+2y-3),
=[x-(2y-3)][x+(2y-3)],
=x2-(2y-3)2
=x2-4y2+12y-9.
考点梳理
整式的混合运算.
(1)根据整式混合运算的顺序,先算乘方,再算乘除,最后算减法;
(2)先运用完全平方公式和多项式的乘法法则分别计算乘方和乘法,再合并同类项;
(3)运用平方差公式先算(2x-1)(2x+1),把得到的积与(4x2-1)相乘,再运用完全平方公式计算,可得出结果;
(4)符合平方差公式的结构特征,运用平方差公式计算.
本题综合考查了整式运算的多个考点.包括合并同类项的法则,幂的运算性质,多项式的乘法法则,平方差公式与完全平方公式等,需熟练掌握,才不容易出错.
找相似题