答案
2055 |
 |
k=5 |
k
解:(1)∵
n |
 |
k=1 |
k=1+2+3+…+(n-1)+n,
∴1+2+3+…+2511=
2511 |
 |
k=1 |
k;
(2)∵
n |
 |
k=1 |
(x+k)=(x+1)+(x+2)+…+(x+n),
∴
15 |
 |
k=1 |
(x-k)=(x-1)+(x-2)+(x-3)+…+(x-9)+(x-15),
∴
15 |
 |
k=1 |
(x-k)=(x-1)+(x-2)+(x-3)+…+(x-9)+(x-15)
=15x-5×11
=15x-55;
(3)∵
n |
 |
k=1 |
(x+k)=(x+1)+(x+2)+…+(x+n),
∴
3 |
 |
k=1 |
[(x-k)(x-k-1)]=(x-1)(x-2)+(x-2)(x-3)+(x-3)(x-4),
∴
3 |
 |
k=1 |
[(x-k)(x-k-1)]=(x-1)(x-2)+(x-2)(x-3)+(x-3)(x-4)
=(x-2)(2x-4)+(x-3)(x-4)
=(2x
2-8x+8)+(x
2-7x+12)
=2x
2-8x+8+x
2-7x+12
=3x
2-15x+25.
故答案为
2511 |
 |
k=1 |
k.