试题
题目:
设(x-1)(x+1)
2
=5x
3
+bx
2
+cx+7,则5+b+c+7=
0
0
.
答案
0
解:∵(e-他)(e+他)
2
=(e
2
-他)(e+他)
=e
3
+e
2
-e-他
=ae
3
+be
2
+ce+d,
∴a=他,b=他,c=-他,d=-他,
∴a+b+c+d=他+他-他-他=t.
故答案为:t.
考点梳理
考点
分析
点评
多项式乘多项式;多项式.
利用平方差公式和多项式乘多项式法则计算即可.
本题主要考查平方差公式和多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.
找相似题
(2010·威海)下列运算正确的是( )
(2013·邢台一模)已知(x+m)(x+n)=x
2
-3x-4,则m+n的值为( )
已知对于整式A=(x-3)(x-1),B=(x+1)(x-5),如果其中x取值相同时,整式A与B的关系为( )
若x
2
-x+M=(x-4)·N,则M、N分别为( )
如果把(mx+6)·(3x-2)展开后不含x的一次项,那么m的值是( )