试题

题目:
将直线l:y=
4
3
x+4
绕点(0,1)旋转180°所得直线的解析式为
y=
4
3
x-2
y=
4
3
x-2

答案
y=
4
3
x-2

解:∵直线l:y=
4
3
x+4

令x=0,得y=4;令y=0,得x=-3,
∴直线l:y=
4
3
x+4
过点A(-3,0),B(0,4),
∴点A(-3,0),B(0,4)分别绕点(0,1)旋转180°所得对应点A′(3,2),B′(0,-2),
设直线A′B′的解析式为y=kx+b,
则3k+b=2,b=-2,
解得k=
4
3
,b=-2,
即所求直线的解析式为y=
4
3
x-2.
故答案为:y=
4
3
x-2.
考点梳理
一次函数图象与几何变换.
先在直线l:y=
4
3
x+4
上取两点A(-3,0),B(0,4),得出点A(-3,0),B(0,4)分别绕点(0,1)旋转180°所得对应点A′(3,2),B′(0,-2),再运用待定系数法求解即可.
本题考查了一次函数图象与几何变换,待定系数法求函数解析式,难度不大,关键是掌握旋转的特点.
找相似题