试题
题目:
(2012·高邮市一模)如图,A、B、C、D是⊙O四等分点,动点P沿O-C-D-O路线作匀速运动,设运动时间为xs,∠APB=y°,右图表示y与x之间函数关系,则点M的横坐标为
π
2
+1
π
2
+1
.
答案
π
2
+1
解:根据题意,可知点P从圆心O出发,运动到点C时,∠APB的度数由90°减小到45°,
∴在C点时所对的横坐标为1,
∴OC=1,由弧长公式可以求出弧CD的长度为
1
2
π.
当横坐标为M是点P是∠APB由稳定在45°保持不变到增大的转折点;
∴横坐标为M值所对应的点是D点,表示这时P点运动到了D点.
∴M的横坐标=OC+弧CD的长=
1
2
π+1.
故答案为:
1
2
π+1.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
通过函数图象可以得到函数随自变量的变化规律,通过规律结合图象可以求出关键点C、D的坐标值,从而求出M横坐标的值.
本题考查了动点问题的函数图象,根据速度、路程、时间的关系求出点P在CD弧上运动的时间是解题的关键,有一定难度.
压轴题;动点型.
找相似题
(2013·南充)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm
2
,已知y与t的函数关
系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;
②当0<t≤5时,y=
2
5
t
2
;
③直线NH的解析式为y=-
2
5
t+27;
④若△ABE与△QBP相似,则t=
29
4
秒,
其中正确结论的个数为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2013·贵阳)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是( )
(2012·庆阳)如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是( )
(2012·佳木斯)如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD的边上沿着A→B→C→D的路径以1cm/s的速度运动,在这个运动过程中△APD的面积s(cm
2
)随时间t(s)的变化关系用图象表示,正确的是 ( )