试题
题目:
如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F是线段AB上的动点,设AF=x,AE
2
-FE
2
=y,则能表示y与x的函数关系的图象是( )
A.
B.
C.
D.
答案
C
解:如右图所示,延长CE交AB于G.设AF=x,AE
2
-FE
2
=y;
∵△AEG和△FEG都是直角三角形
∴由勾股定理得:AE
2
=AG
2
+GE
2
,FE
2
=FG
2
+EG
2
,
∴AE
2
-FE
2
=AG
2
-FG
2
,即y=2
2
-(2-x)
2
=-x
2
+4x,
这个函数是一个二次函数,抛物线的开口向下,对称轴为x=2,与x轴的两个交点坐标分别是(0,0),(4,0),顶点为(2,4),自变量0<x<4.
所以C选项中的函数图象与之对应.
故选C.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
延长CE交AB于G,△AEG和△FEG都是直角三角形,运用勾股定理列出y与x的函数关系式即可判断出函数图象.
本题考查了几何与函数相结合的题型,同学们应注意运用勾股定理的重要性,它就是解决此题的关键.
动点型.
找相似题
(2013·南充)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm
2
,已知y与t的函数关
系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;
②当0<t≤5时,y=
2
5
t
2
;
③直线NH的解析式为y=-
2
5
t+27;
④若△ABE与△QBP相似,则t=
29
4
秒,
其中正确结论的个数为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2013·贵阳)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是( )
(2012·庆阳)如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是( )
(2012·佳木斯)如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD的边上沿着A→B→C→D的路径以1cm/s的速度运动,在这个运动过程中△APD的面积s(cm
2
)随时间t(s)的变化关系用图象表示,正确的是 ( )