试题
题目:
(2012·历下区一模)如图,△ABC是等边三角形,△DEF是边长为7的等边三角形,点B与点E重合,点A、B、(E)、F在同一条直线上,将△ABC沿E→F方向平移至点A与点F重合时停止,设点B、E之间的距离为x,△ABC与△DEF重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是( )
A.
B.
C.
D.
答案
B
解:由题意知:在△ABC移动的过程中,阴影部分总为等边三角形.
当0<x≤AB时,此时重合部分为等边三角形,边长为x,则y=x×
3
2
x×
1
2
=
3
4
x
2
,
当AB<x≤7时,此时重合部分为等边三角形,边长为AB,则y=AB×
3
2
AB×
1
2
=
3
4
AB
2
,
当7<x≤7+AB时,此时重合部分重合部分为等边三角形,边长为AB+7-x,则y=(AB+7-x)×
3
2
(AB+7-x)×
1
2
;
由以上分析可知,这个分段函数的图象左边为抛物线的一部分,中间为直线的一部分,右边为抛物线的一部分.
故选B.
考点梳理
考点
分析
点评
动点问题的函数图象.
要找出准确反映y与x之间对应关系的图象,需分析在不同阶段中y随x变化的情况,由题意知,在△ABC移动的过程中,阴影部分总为等边三角形;据此根据重合部分的边长的不同分情况讨论求解.
此题主要考查了动点问题的函数图象,主要运用分类讨论的思想,函数的知识和等边三角形的知识,具有很强的综合性.
找相似题
(2013·南充)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm
2
,已知y与t的函数关
系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;
②当0<t≤5时,y=
2
5
t
2
;
③直线NH的解析式为y=-
2
5
t+27;
④若△ABE与△QBP相似,则t=
29
4
秒,
其中正确结论的个数为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2013·贵阳)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是( )
(2012·庆阳)如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是( )
(2012·佳木斯)如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD的边上沿着A→B→C→D的路径以1cm/s的速度运动,在这个运动过程中△APD的面积s(cm
2
)随时间t(s)的变化关系用图象表示,正确的是 ( )