试题
题目:
(2009·济南)如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是( )
A.
B.
C.
D.
答案
B
解:根据题意可得:①F、A重合之前没有重叠面积,
②F、A重叠之后,设EF被重叠部分的长度为x,则重叠部分面积为s=
1
2
x·xtan∠EFG=
1
2
x
2
tan∠EFG,
∴是二次函数图象,
③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,
④F与B重合之后,重叠部分的面积等于S
△EFG
=-
1
2
x
2
tan∠EFG,符合二次函数图象,直至最后重叠部分的面积为0.
综上所述,只有B选项图形符合.
故选B.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
本题要求正确理解函数图象与实际问题的关系.
压轴题;动点型;图表型.
找相似题
(2013·南充)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm
2
,已知y与t的函数关
系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;
②当0<t≤5时,y=
2
5
t
2
;
③直线NH的解析式为y=-
2
5
t+27;
④若△ABE与△QBP相似,则t=
29
4
秒,
其中正确结论的个数为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2013·贵阳)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是( )
(2012·庆阳)如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是( )
(2012·佳木斯)如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD的边上沿着A→B→C→D的路径以1cm/s的速度运动,在这个运动过程中△APD的面积s(cm
2
)随时间t(s)的变化关系用图象表示,正确的是 ( )