试题
题目:
如图所示,把△ABC沿直线DE翻折后得到△A′DE,如果∠A′EC=32°,那么∠A′ED=
74°
74°
.
答案
74°
解:∵把△ABC沿直线DE翻折后得到△A′DE,
∴∠A′ED=∠AED,
∵∠A′EC=32°,
∴∠A′ED=(180°-32°)÷2=74°.
故答案为:74°.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
根据折叠的性质可知,∠A′ED=∠AED,再根据平角的定义和已知条件即可求解.
考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )