试题
题目:
如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若∠C=30°,则∠AEC′=
60°
60°
.
答案
60°
解:根据折叠可得:EC=EC′,
∴∠EC′D=∠C,
∵∠C=30°,
∴∠EC′D=30°,
∴∠AEC′=30°+30°=60°,
故答案为:60°.
考点梳理
考点
分析
点评
三角形的外角性质;翻折变换(折叠问题).
首先根据折叠可得EC=EC′,根据等边对等角可得∠EC′D=∠C,再根据三角形外角与内角的关系可得∠AEC′=∠C+∠C′,进而得到答案.
此题主要考查了三角形内角与外角的关系,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )