试题
题目:
如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=
20
20
度.
答案
20
解:∵∠AME=∠CMD=70°
∴在△AEM中∠1=180-90-70=20°
∵△ABE≌△ACF,
∴∠EAB=∠FAC,
即∠1+∠CAB=∠2+∠CAB,
∴∠2=∠1=20°.
故填20.
考点梳理
考点
分析
点评
全等三角形的性质.
△ABE≌△ACF得到∠EAB=∠FAC从而∠1=∠2,这样求∠2就可以转化为求∠1,在△AEM中可以利用三角形的内角和定理就可以求出.
本题主要考查了全等三角形的性质,全等三角形的对应角相等,是需要识记的内容;做题时要认真观察图形,找出各角之间的位置关系,这也是比较重要的.
找相似题
(2010·鞍山)如图,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2010m停下,则这个微型机器人停在( )
(2011·桐乡市二模)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是( )
如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,在下列结论中,不正确的是( )
如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于( )
如图,△ABC≌△DEC,∠ACB=90°,∠DCB=20°,则∠BCE的度数为( )