试题
题目:
如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则( )
A.AF=2BF
B.AF=BF
C.AF>BF
D.AF<BF
答案
B
解:∵AD平分∠BAC,EF∥AC,
∴∠FAE=∠CAE=∠AEF,
∴AF=EF,
∵BE⊥AD,
∴∠FAE+∠ABE=90°,∠AEF+∠BEF=90°,
∴∠ABE=∠BEF,
∴BF=EF,
∴AF=BF.
故选B.
考点梳理
考点
分析
点评
全等三角形的性质.
根据角平分线的定义和两直线平行,内错角相等的性质得∠FAE=∠FEA,所以AF=EF,再根据BE⊥AD得∠AEB=90°,然后根据等角的余角相等得到∠ABE=∠BEF,根据等角对等边的性质BF=EF,所以AF=BF.
本题主要利用角平分线的定义,两直线平行,内错角相等的性质,等角对等边的性质,熟练掌握性质是解题的关键.
找相似题
(2010·鞍山)如图,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2010m停下,则这个微型机器人停在( )
(2011·桐乡市二模)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是( )
如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,在下列结论中,不正确的是( )
如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于( )
如图,△ABC≌△DEC,∠ACB=90°,∠DCB=20°,则∠BCE的度数为( )