试题

题目:
青果学院从高空下落的小球,速度越来越大,所受空气阻力也会随速度的增大而增大,某一小球下落一段距离后的运动情况如频闪照片(它表示物体在相等的时间间隔所处的位置)如图所示,通常把这一过程中的速度称为收尾速度.(g取10N/kg)
(1)从图中可以看出,该小球达到收尾速度时做
匀速直线
匀速直线
运动;若其他小球和该小球收尾时的运动规律一样,则质量为500g的小球在达到收尾速度时受到的阻力为
5
5
N.
(2)继续研究发现,相同条件下,空气对不同材质的球形物体的阻力大小与球的半径和速度都有关系.下表为某次研究的实验数据,根据表格中的数据可知:
小球编号 1 2 3 4
小球质量(×10-2kg) 2 5 45 40
小球半径(×10-3m) 0.5 0.5 1.5 2
小球收尾速度(m/s) 16 40 40 20
①比较小球2和3可归纳出:球形物体所受空气阻力f与球的半径r的关系是当收尾速度一定时,f与
球的半径的平方
球的半径的平方
正比
正比
关系;
②比较小球1和2可归纳出:球形物体所受空气阻力f与球的收尾速度v的关系是当球的半径一定时,f与
收尾速度
收尾速度
正比
正比
关系;
③依据上述关系请计算:半径为4×10-3m、质量为多少克的小球的收尾速度是10m/s.
答案
匀速直线

5

球的半径的平方

正比

收尾速度

正比

解:(1)由频闪照片中看出,两点间距一直不变,由此可知该小球做的是匀速直线运动;小球处于平衡状态,根据二力平衡条件,所受重力与阻力相等,阻力f=G=mg=0.5kg×10N/kg=5N;
(2)①编号为2、3的小球在达到收尾速度时,所受的空气阻力之比f2:f3=m2g:m3g=0.05kg×g:0.45kg×g=1:9,
小球半径之比:r2:r3=0.5×10-3m:1.5×10-3m=1:3,可见,球形物体所受空气阻力f与球的半径r的关系是当收尾速度一定时,f与球的半径的平方成正比关系;
②由编号为1、2两个小球的数据分析,在半径r相同的情况下,
收尾速度之比V1:V2=16m/s:40m/s=2:5,空气阻力之比f1:f2=m1g:m2g=0.02kg×g:0.05kg×g=2:5,可见球形物体所受空气阻力f与球的收尾速度v的关系是当球的半径一定时,f与收尾速度成正比关系.
③由①②可得f=mg=kr2v,将编号1中数据代入得:
f=mg=2×10-2kg×g=k×(0.5×10-3m)2×16,
解得:k=50000;
∴f=mg=50000r2v,
设半径为4×10-3m、质量为M的小球的收尾速度是10m/s,
则:M×10N/kg=50000×(4×10-3m)2×10m/s,
解得:M=0.8kg=800g.
故答案为:(1)匀速直线,5;
(2)①球的半径的平方,正;②收尾速度,正比;③800g.
考点梳理
速度与物体运动;速度公式及其应用;二力平衡条件的应用.
(1)在频闪照片中隐含的物理信息是每相连的两个点间的时间间隔相等,可根据两点间距变化判断做的是什么运动;当物体处于平衡状态时,所受的力就是平衡力,据此判断;
(2)①对编号为2、3两个小球的数据分析,在收尾速度V相同的情况下,半径之比已知,再求出阻力之比,进行比较即可得出结论;
②对编号为1、2两个小球的数据分析,在半径r相同的情况下,收尾速度之比已知,再求出阻力之比,进行比较得出结论;
③由①②可得f=mg=kr2v,将编号1中数据代入求得k的大小,进而求出半径为4×10-3m、质量为多少克的小球的收尾速度是10m/s.
本题考查收尾速度、小球半径以及阻力的关系,关键知道物体达到收尾速度时重力等于阻力,要学会应用控制变量法解题,还要学会分析数据.
实验题;信息给予题;推理法.
找相似题