试题
题目:
若整系数方程ax+by=c(ab≠0)有整数解,则(a,b)|c,反之,若(a,b)|c,则整系数方程ax+by=c(ab≠0)有整数解.其中(a,b)表示a,b的最大公约数,(a,b)|c表示(a,b)能整除c.根据这种方法判定下列二元一次方程有无整数解.
(1)3x+4y=33;
(2)2x+6y=15.
答案
解:
(1)3,4的最大公约数是1,1能整除33,所以3x+4y=33有整数解;
(2)2,6的最大公约数是2,2不能整除15,所以2x+6y=15无整数解.
解:
(1)3,4的最大公约数是1,1能整除33,所以3x+4y=33有整数解;
(2)2,6的最大公约数是2,2不能整除15,所以2x+6y=15无整数解.
考点梳理
考点
分析
点评
专题
解二元一次方程.
阅读题目,依据题中给出的判断方法进行判断,先找出最大公约数,然后再看能否整除c,从而来判断是否有整数解.
此题主要考查阅读理解能力,必须能读懂题意才能做出准确的判断,用到的知识点是最大公约数及简单的除法运算,难点在于理解题意,读懂题是解题的关键.
阅读型.
找相似题
2x+3y=5,可以得到用含x的式子表示y,正确的是( )
二元一次方程4x+3y=25的正整数解有( )
二元一次方程3x+y=10的整数解有几组?( )
方程x+2y=7在自然数范围内解的个数有( )
已知二元一次方程2x-3y=1,用含有x的代数式表示y得( )