试题

题目:
(1)判断下列各式是否正确.你认为成立的,请在括号内打“∨”,不成立的打“×”.
2+
2
3
=2
2
3
  ②
3+
3
8
=3
3
8
4+
4
15
=4
4
15
  ④
5+
5
24
=5
5
24

(2)你判断完以上各题之后,请猜测你发现的规律,用含n的式子将其规律表示出来,并注明n的取值范围:
n+
n
n2-1
=n
n
n2-1
n+
n
n2-1
=n
n
n2-1

(3)请用数学知识说明你所写式子的正确性
等式左边=
n(1+
1
n2-1
)
=
n2
n2-1
=n
n
n2-1
=n边,
n+
n
n2-1
=n
n
n2-1
等式左边=
n(1+
1
n2-1
)
=
n2
n2-1
=n
n
n2-1
=n边,
n+
n
n2-1
=n
n
n2-1

答案




n+
n
n2-1
=n
n
n2-1

等式左边=
n(1+
1
n2-1
)
=
n2
n2-1
=n
n
n2-1
=n边,
n+
n
n2-1
=n
n
n2-1

解:(j)①
2+
2
=
8
=2
2
,本选项正确;
个+
8
=
27
8
=个
8
,本选项正确;
4+
4
j5
=
04
j5
=4
4
j5
,本选项正确;
5+
5
24
=
j25
24
=5
5
24
,本选项正确;

(2)归纳总结b:
n+
n
n2-j
=n
n
n2-j


(个)等式左边=
n(j+
j
n2-j
)
=
n2
n2-j
=n
n
n2-j
=右边,
n+
n
n2-j
=n
n
n2-j

故答案为:①√;②√;③√;④√;(2)
n+
n
n2-j
=n
n
n2-j
;(个)等式左边=
n(j+
j
n2-j
)
=
n2
n2-j
=n
n
n2-j
=右边,则
n+
n
n2-j
=n
n
n2-j
考点梳理
算术平方根.
(1)利用二次根式的运算法则计算得到结果,即可做出判断;
(2)归纳总结得到一般性规律,写出即可;
(3)利用二次根式的性质及化简公式证明即可.
此题考查了算术平方根,熟练掌握定义是解本题的关键.
规律型.
找相似题