试题

题目:
青果学院如图所示,O是直线AB上一点,∠AOC=
1
3
∠BOC,OC是∠AOD的平分线.
(1)求∠COD的度数.
(2)判断OD与AB的位置关系,并说出理由.
答案
解:(1)∵∠AOC+∠BOC=180°,∠AOC=
1
3
∠BOC,
1
3
∠BOC+∠BOC=180°,
解得∠BOC=135°,
∴∠AOC=180°-∠BOC
=180°-135°=45°,
∵OC平分∠AOD,
∴∠COD=∠AOC=45°.

(2)OD⊥AB.
理由:由(1)知
∠AOC=∠COD=45°,
∴∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB(垂直定义).
解:(1)∵∠AOC+∠BOC=180°,∠AOC=
1
3
∠BOC,
1
3
∠BOC+∠BOC=180°,
解得∠BOC=135°,
∴∠AOC=180°-∠BOC
=180°-135°=45°,
∵OC平分∠AOD,
∴∠COD=∠AOC=45°.

(2)OD⊥AB.
理由:由(1)知
∠AOC=∠COD=45°,
∴∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB(垂直定义).
考点梳理
垂线;对顶角、邻补角.
利用∠AOC=
1
3
∠BOC及补角的性质就可求出∠COD的度数;求出∠AOD的度数就可知道OD与AB的位置关系.
此题主要考查了补角的性质及垂直的定义,要注意领会由直角得垂直这一要点.
计算题;探究型.
找相似题