试题
题目:
如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠BOE=
62
62
度,∠AOG=
59
59
度.
答案
62
59
解:∵AB⊥CD,
∴∠AOD=∠AOC=90°,
∵∠FOD=28°,
∴∠AOF=90°-28°=62°,
∴∠BOE=62°;
∵∠FOD=28°,
∴∠COE=28°,
∵∠AOC=90°,
∴∠AOE=90°+28°=118°,
∵OG平分∠AOE,
∴∠AOG=118°÷2=59°,
故答案为:62;59.
考点梳理
考点
分析
点评
垂线;对顶角、邻补角.
首先根据垂直定义可得∠AOD=∠AOC=90°,然后计算出∠AOF的度数,再根据对顶角相等可得∠BOE的度数;首先计算出∠AOE的度数,再根据角平分线的性质可得∠AOG的度数.
此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,及角平分线把角分成相等的两部分.
找相似题
(2010·郴州)如图,直线l
1
与l
2
相交于点O,OM⊥l
1
,若α=44°,则β=( )
(2013·丰台区一模)如图,直线AB、CD相交于点O,OE⊥CD,∠BOE=54°,则∠AOC等于( )
如图,在一张透明的纸上画一条直线l,在l外任取一点Q并折出过点Q且与l垂直的直线.这样的直线能折出( )
下列说法正确的是( )
如图,已知AB、CD相交于O,OE⊥CD于O,∠AOC=36°,则∠BOE=( )