试题
题目:
如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=
134°
134°
.
答案
134°
解:∵OE⊥AB,
∴∠EOB=90°,
∵∠COE=44°,
∴∠COB=90°+44°=134°,
∴∠AOD=134°,
故答案为:134°.
考点梳理
考点
分析
点评
垂线;对顶角、邻补角.
首先根据垂直定义可得∠EOB=90°,再根据角的和差关系可得∠COB=134°,再根据对顶角相等可得∠AOD的度数.
此题主要考查了垂线以及对顶角,关键是算出∠EOB的度数,掌握对顶角相等.
找相似题
(2010·郴州)如图,直线l
1
与l
2
相交于点O,OM⊥l
1
,若α=44°,则β=( )
(2013·丰台区一模)如图,直线AB、CD相交于点O,OE⊥CD,∠BOE=54°,则∠AOC等于( )
如图,在一张透明的纸上画一条直线l,在l外任取一点Q并折出过点Q且与l垂直的直线.这样的直线能折出( )
下列说法正确的是( )
如图,已知AB、CD相交于O,OE⊥CD于O,∠AOC=36°,则∠BOE=( )