试题

题目:
青果学院已知:如图所示,从点O引四条射线OA、OB、OC、OD,如果OA⊥OC,OB⊥OD.
(1)若∠BOC=35°,求∠AOB与∠COD的大小;
(2)若∠BOC=50°,求∠AOB与∠COD的大小;
(3)你发现∠AOB与∠COD的大小有什么关系?
答案
解:(1)∵OA⊥OC,
∴∠AOB+∠BOC=90°,
∵∠BOC=35°,
∴∠AOB+35°=90°,
∴∠AOB=55°,
同理可得:∠COD=55°.

(2)∵OA⊥OC,
∴∠AOB+∠BOC=90°,
∵∠BOC=50°,
∴∠AOB+50°=90°,
∴∠AOB=40°,
同理可得:∠COD=40°;

(3)从(1)、(2)的运算知道:
∠AOB=∠COD.
解:(1)∵OA⊥OC,
∴∠AOB+∠BOC=90°,
∵∠BOC=35°,
∴∠AOB+35°=90°,
∴∠AOB=55°,
同理可得:∠COD=55°.

(2)∵OA⊥OC,
∴∠AOB+∠BOC=90°,
∵∠BOC=50°,
∴∠AOB+50°=90°,
∴∠AOB=40°,
同理可得:∠COD=40°;

(3)从(1)、(2)的运算知道:
∠AOB=∠COD.
考点梳理
角的计算;垂线.
(1)根据OA⊥OC得到∠AOC=90°,所以∠AOB=90°-∠BOC,同理可得∠COD的度数;
(2)与(1)的求解方法完全相同;
(3)因为都与∠BOC的和等于90°,所以相等.
本题主要考查角的运算,看懂图形,准确找出角的和差关系便不难进行求解.
计算题;探究型.
找相似题