题目:

如图所示,△ABC是直角三角形,∠ACB=90°.
(1)用尺规作图:作△ABC的内切圆(保留作图痕迹,不写作法);
(2)如果AC=8,BC=6,试求△ABC内切圆的半径.
答案

解:(1)①分别作出∠BAC与∠ABC的角平分线,这两条角平分线的交点是△ABC的内切圆的圆心O,
②过点O作OD⊥BC于点D,
③以O为圆心,OD长为半径画圆,
则⊙O即是△ABC的内切圆;
(2)设△ABC内切圆的半径为r,
∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,
∴AB=
=10,
∴S
△ABC=
AC·BC=
×8×6=24,AB+AC+BC=24,
∵S
△ABC=
(AB+AC+BC)r,
∴r=
=
=2.

解:(1)①分别作出∠BAC与∠ABC的角平分线,这两条角平分线的交点是△ABC的内切圆的圆心O,
②过点O作OD⊥BC于点D,
③以O为圆心,OD长为半径画圆,
则⊙O即是△ABC的内切圆;
(2)设△ABC内切圆的半径为r,
∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,
∴AB=
=10,
∴S
△ABC=
AC·BC=
×8×6=24,AB+AC+BC=24,
∵S
△ABC=
(AB+AC+BC)r,
∴r=
=
=2.