试题
题目:
已知在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O;(不写作法,保留作图痕迹)
(2)求证:BC是⊙O切线;
(3)若AC=3,AB=5,求⊙O的半径长.
答案
解:(1)如图所示.
(2)连接OD;
∵AD平分∠BAC,
∴∠BAD=∠DAC;
又∵OD=OA,
∴∠ODA=∠OAD,
∴∠ODA=∠DAC,
∴OD∥AC,
∴∠ODB=∠C=90°.
又OD是⊙O的半径,
∴BC为⊙O的切线.
(3)设圆O的半径为r.
∵AC=3,AB=5,
∴sinB=
AC
AB
=
OD
OB
=
r
AB-r
,即
3
5
=
r
5-r
,
解得r=
15
8
,即⊙O的半径长是
15
8
.
解:(1)如图所示.
(2)连接OD;
∵AD平分∠BAC,
∴∠BAD=∠DAC;
又∵OD=OA,
∴∠ODA=∠OAD,
∴∠ODA=∠DAC,
∴OD∥AC,
∴∠ODB=∠C=90°.
又OD是⊙O的半径,
∴BC为⊙O的切线.
(3)设圆O的半径为r.
∵AC=3,AB=5,
∴sinB=
AC
AB
=
OD
OB
=
r
AB-r
,即
3
5
=
r
5-r
,
解得r=
15
8
,即⊙O的半径长是
15
8
.
考点梳理
考点
分析
点评
切线的判定;作图—复杂作图;相似三角形的判定与性质.
(1)如图,作AD的中垂线l,直线l与线段AB的交点即为圆心O.以OA为半径、O为圆心作圆O.
(2)连接OD.欲证BC是⊙O切线,只需证明OD⊥BC即可.
(3)设圆O的半径为r.通过∠B的正弦的定义来求⊙O的半径.
本题考查了学生的运用基本作图的知识作复杂图的能力,以及切线的判定等知识点.本题中作图的理论依据是垂径定理.
找相似题
(2013·河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
(2013·福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )
(2012·河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )
(2013·福州质检)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD的长,约为( )
(2012·栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )