试题
题目:
如图,O是直线AB上任意一点,OC平分∠AOB.按下列要求画图并回答问题:
(1)分别在射线OA、OC上截取线段OD、OE,且OE=2OD;
(2)连接DE;
(3)以O为顶点,画∠DOF=∠EDO,射线OF交DE于点F;
(4)写出图中∠EOF的所有余角:
∠DOF,∠EDO
∠DOF,∠EDO
.
答案
∠DOF,∠EDO
解:(1)如图所示:
(2)如图所示;
(3)如图所示:
(4)∠EOF+∠DOF=90°,∠EOF+∠EDO=90°.
故答案为:∠DOF,∠EDO.
考点梳理
考点
分析
点评
作图—复杂作图;角平分线的定义;余角和补角.
(1)在射线OA、OC上用圆规截取线段OD、OE,且OE=2OD,得出即可;
(2)连接DE即可;
(3)利用作一角等于已知角进而得出即可;
(4)利用角互余的性质得出∠EOF的所有余角.
此题主要考查了作一角等于已知角以及两角互余的关系,正确作出∠FOD是解题关键.
找相似题
(2013·河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
(2013·福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )
(2012·河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )
(2013·福州质检)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD的长,约为( )
(2012·栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )