试题
题目:
如图,已知△ABC,
(1)根据要求作图,在边BC上求作一点D,使得点D到AB、BC的距离相等,在边AB上求作一点E,使得点E到A、D的距离相等;(不要求写作法,但需要保留作图痕迹和结论)
(2)在第(1)小题所作的图中,求证:DE∥AC.
答案
(1)解:如图所示:
(2)证明:∵AD是∠BAC的角平分线,
∴∠CAD=∠BAD,
∵EF是AD的中垂线,
∴ED=EA,
∴∠ADE=∠BAD,
∴∠CAD=∠ADE,
∴DE∥AC.
(1)解:如图所示:
(2)证明:∵AD是∠BAC的角平分线,
∴∠CAD=∠BAD,
∵EF是AD的中垂线,
∴ED=EA,
∴∠ADE=∠BAD,
∴∠CAD=∠ADE,
∴DE∥AC.
考点梳理
考点
分析
点评
作图—复杂作图;角平分线的性质;线段垂直平分线的性质.
(1)由题意可知,D是∠BAC的角平分线与BC的交点,点E是AD的中垂线与AB的交点;
(2)根据角平分线的性质和线段垂直平分线的性质可得∠CAD=∠ADE,再根据平行线的判定即可求解.
本题主要考查线段中垂线上的点的性质、角平分线上点的性质、关键是认真正确的画出作图痕迹.
找相似题
(2013·河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
(2013·福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )
(2012·河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )
(2013·福州质检)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD的长,约为( )
(2012·栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )