试题
题目:
(2011·抚顺一模)如图,已知Rt△ABC,∠ABC=90°.
(1)根据下列语句作图并保留作图痕迹:作Rt△ABC的外接圆⊙O,过点A作⊙O的切线PA与AB的垂直平分线交于点P.
(2)连接PB,求证:PB是⊙O的切线;
(3)已知PA=AB=
3
,求线段PA、PB与弧AB围成的图形的面积.
答案
(1)
解:如图所示:
(2)证明:∵点P、O在AB垂直平分线上,
∴PA=PB,AO=BO,
∴∠PAB=∠PBA,
∠OAB=∠OBA,
∵PA是⊙O的切线,
∴∠OAP=90°,
∴∠OAB+∠BAP=∠OBA+∠PBA=90°,
∴OB⊥PB,
∴PB是⊙O切线;
(3)解:∵PA,PB都是⊙O的切线,
∴PA=PB,
∵PA=AB=
3
,
∴PA=AB=PB,
∴△PAB是等边三角形,
∴∠PAD=60°,
∴∠OAD=30°,
∴r=1,∠AOB=60°,∠AOB=120°,
∴S
四边形AOBP
=
1
2
×1×
3
×2=
3
,
S
扇形AOB
=
1
3
π,
所求图形的面积为(
3
-
1
3
π)平方厘米.
(1)
解:如图所示:
(2)证明:∵点P、O在AB垂直平分线上,
∴PA=PB,AO=BO,
∴∠PAB=∠PBA,
∠OAB=∠OBA,
∵PA是⊙O的切线,
∴∠OAP=90°,
∴∠OAB+∠BAP=∠OBA+∠PBA=90°,
∴OB⊥PB,
∴PB是⊙O切线;
(3)解:∵PA,PB都是⊙O的切线,
∴PA=PB,
∵PA=AB=
3
,
∴PA=AB=PB,
∴△PAB是等边三角形,
∴∠PAD=60°,
∴∠OAD=30°,
∴r=1,∠AOB=60°,∠AOB=120°,
∴S
四边形AOBP
=
1
2
×1×
3
×2=
3
,
S
扇形AOB
=
1
3
π,
所求图形的面积为(
3
-
1
3
π)平方厘米.
考点梳理
考点
分析
点评
专题
切线的判定与性质;扇形面积的计算;作图—复杂作图.
(1)利用直角三角形外接圆的性质,直接找到斜边中点求出即可;
(2)利用切线的性质与判定,得出∠OAB+∠BAP=∠OBA+∠PBA=90°,即可得出答案;
(3)根据(2)中所求,可以得出△PAB是等边三角形,进而得出r=1,∠AOB=60°,∠AOB=120°,即可求出所求图形的面积.
此题主要考查了切线的判定与性质以及扇形面积求法和做复杂图形,根据已知得出正确图形是解题关键.
几何综合题.
找相似题
(2013·河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
(2013·福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )
(2012·河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )
(2013·福州质检)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD的长,约为( )
(2012·栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )