试题
题目:
现有一张长方形纸片ABCD(如图),其中AB=4,BC=6,点E是BC的中点.将纸片沿直线AE折叠,使点B落在四边形AECD内,记为点B′
(1)请用尺规在图中作出△AEB′(不必写出作法,但要求保留作图痕迹);
(2)判断△BB′C是什么三角形?并说明理由;
(3)求出B′、C两点之间的距离.
答案
解:(1)如图所示:
可以从B,B′关于AE对称来作,也可以从△ABE≌△AB′E来作;
(2)如图所示:
∵E为BC中点,
∴BE=EC=3,
∵BE=EB′,
∴BE=EC=EB′,
∴△BB′C是直角三角形;
(3)如图所示:
∵B,B′关于AE对称,
∴BB′⊥AE,设垂足为F,
∵AB=4,BC=6,E是BC的中点,
∴BE=3,AE=5,
∵∠BEF=∠AEB,∠BFE=∠ABE,
∴△BFE∽△ABE,
∴BF=
AB×BE
AE
,
∴BF=
12
5
.
∴BB′=
24
5
.
∵B′E=BE=CE,
∴∠BB′C=90°,
∴B′C=
6
2
-(
24
5
)
2
=
18
5
.
两点之间的距离为
18
5
.
解:(1)如图所示:
可以从B,B′关于AE对称来作,也可以从△ABE≌△AB′E来作;
(2)如图所示:
∵E为BC中点,
∴BE=EC=3,
∵BE=EB′,
∴BE=EC=EB′,
∴△BB′C是直角三角形;
(3)如图所示:
∵B,B′关于AE对称,
∴BB′⊥AE,设垂足为F,
∵AB=4,BC=6,E是BC的中点,
∴BE=3,AE=5,
∵∠BEF=∠AEB,∠BFE=∠ABE,
∴△BFE∽△ABE,
∴BF=
AB×BE
AE
,
∴BF=
12
5
.
∴BB′=
24
5
.
∵B′E=BE=CE,
∴∠BB′C=90°,
∴B′C=
6
2
-(
24
5
)
2
=
18
5
.
两点之间的距离为
18
5
.
考点梳理
考点
分析
点评
翻折变换(折叠问题);勾股定理;作图—复杂作图.
(1)折叠实际上是作轴对称图形,故从B,B′关于AE对称来作图即可;
(2)利用直角三角形的判定,当一边上的中线等于斜边的一半这个三角形是直角三角形,得出即可;
(3)根据折叠的性质,有AB=4,BC=6,E是BC的中点,进而可得B′E=BE=CE,解可得两点之间的距离为
18
5
cm.
本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
找相似题
(2013·河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
(2013·福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )
(2012·河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )
(2013·福州质检)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD的长,约为( )
(2012·栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )